Angiotensin-converting-enzyme inhibitors versus steroids as first-line drug treatment in Duchenne muscular dystrophy

Stéphane Chabrier1, Isabelle Desguerre2,3, Mélanie Porte4, Claude Payet5, François Rivier5,6 for the Neuromuscular Commission of the Société Française de Neurologie

Pédriatre
1 CHU Saint-Etienne, Service de médecine physique et réadaptation pédiatric – Centre de référence maladies neuromusculaires Rhône-Alpes, Hôpital Bellevue, Saint-Étienne, France. 2 Unité de neuropédiatrie – Centre de référence maladies neuromusculaires Garches-Necker-Mondor-Hendaye, Hôpital Necker, Paris, France. 3 INSERM, U841 Mondor Biomedical Research Institute, Université Paris 12, Créteil, France. 4 CHU Nîmes, Service de médecine physique et réadaptation – Centre de référence maladies neuromusculaires du grand Sud Ouest, Hôpital Caremau, Nîmes, France. 5 CHU Montpellier, Service de neuropédiatrie – Centre de référence maladies neuromusculaires du grand Sud Ouest, Hôpital Gui de Chauliac, Montpellier, France. 6 INSERM, ERI 25 ‘Muscle et Pathologies’, Université Montpellier 1, UFR de Médecine, Montpellier, France.

Correspondence to: stephane.chabrier@chu-st-etienne.fr
doi: 10.1111/j.1469-8749.2010.03742.x

SIR–We carefully read the editorial by Peter Baxter published in the April issue, as well as the original two-part paper by Bushby et al. in Lancet Neurology that extensively reviews the latest insights into the multidisciplinary management of people with Duchenne muscular dystrophy (DMD).1–3 We found this article very interesting and helpful to any clinician interested in this pathology, and more generally, to any patient, family, physician, and patient support group involved with people with severe neuromuscular diseases. We also agree with the most controversial points raised in the editorial. Nevertheless, we would like to offer some additional remarks concerning the pharmacological treatment of DMD.

Five pages in the original article by Bushby et al. are devoted to steroid therapy. As others, we regularly use this treatment, which is well-tolerated at the beginning of medication and improves patient autonomy, including prolongation of time to loss of walking. Interestingly, using the same assessment tools, we found results very similar to those published by Vuillerot et al. (Fig. 1).4 However, the long-term efficiency of corticotherapy is uncertain and is largely outweighed by side-effects in some patients. In non-ambulatory males, the effect on bone mineral density (with the risk of developing fractures and bone pain) and the propensity for excessive weight gain adversely increase the dependence, whilst the primary goal at that time (i.e. improvement in respiratory muscle strength and cardiac outcome) is not obvious. Moreover, some research recently showed that mdx mice treated with corticoids have a highest risk of myocardopathy.5

On the other side, perindopril is not cited in the two-part article by Bushby et al. even though it is the first molecule (and the only one so far) that has demonstrated efficiency in improving life expectancy for males suffering from this devastating disease. Research primarily showed that early treatment with perindopril (i.e. introduced between the ages of 9 y 6 mo and 13 y and before the occurrence of patent myocardopathy) delays the onset and progression of left ventricle dysfunction.6 The benefits are even stronger with time since the mortality was five-fold lower in the early treatment group versus the delayed treatment group at the end of the 10-year follow-up period of this prospective pilot study (p<0.01).7 Perindopril is thus largely used in France and this medication is offered to virtually all males with DMD presenting normal left ventricular function at the age of 10. This medication is also very well-tolerated by patients.

Therefore we do not fully concur with the statements of the Bushby et al. papers that ‘… the pharmacological mainstay of neuromuscular management in DMD is the use of glucocorticoids,’ and ‘Recent evidence from clinical trials supports the treatment of cardiomyopathy associated with DMD before signs of abnormal functioning. Further studies are awaited to allow firm recommendations to be made.’ Instead, we believe that the current issue is: what is the optimal age to start angiotensin-converting-enzyme inhibitors? In vivo and in vitro studies support this hypothesis that this class of molecules not only acts on myocardium but also in increasing peripheral muscles function (including respiratory muscles) through their anti-inflammatory and anti-fibrotic properties. As both of these mechanisms are involved in the pathogenicity of dystrophin deficiency, therapeutic trials are currently under way to answer this important question.
REFERENCES


