P4.19

Multiple aortic aneurysms in a patient with Becker muscular dystrophy

M. Yoshioka, H. Konno, T. Takahashi, H. Tanaka, H. Onodera

National Hospital Organization Nishitaga Hospital, Neurology, Sendai, Japan

Introduction: Cardio-vascular complications in patients with muscular dystrophies include congestive heart failure, dilated cardiomyopathy, arrhythmias, and heat blocks. Aortic aneurysms have been rarely reported. We now report a patient with Becker muscular dystrophy, who presented with multiple aortic aneurysms with fatal outcome with pathological findings. **Objectives:** To report aortic aneurysm as a possible cause of death in patients of muscular dystrophy with autopsy findings and etiological considerations. **Methods:** A case report with genetic and autopsy pathological examinations. **Results:** A 60 year-old male patient developed muscle weakness and atrophy at the age of 16. His younger brother presented with similar symptoms and was diagnosed as Becker Muscular dystrophy by genetic examination. The patient’s muscle weakness and atrophy progressed, and heart failure ensued, which was controlled with ACE-I. He complained severe back pain at the age of 58. Enhanced CT study revealed multiple aortic aneurysms. Aortic aneurysms were observed with control of blood pressure. Patient’s status excluded any surgical intervention including aortic reconstruction. After 2 years a patient died of rupture of abdominal aortic aneurysm. Autopsy revealed multiple aortic aneurysms including thoracic and abdominal regions. **Conclusions:** Rupture of aortic aneurysm has been rarely reported during the course of muscular dystrophies. Radiology examinations in the presented case suggested paraspinal tumors as differential diagnosis. Autopsy examination revealed the final diagnosis. Sudden death cases of muscular dystrophies may include mortality with aortic aneurysm. Etiological correlation between aortic aneurysms and Becker muscular dystrophy is uncertain.

doi:10.1016/j.nmd.2010.07.216

P4.20

Telomere length in exercised wild type and mdx mice

S. Messina¹, G.L. Vita², M. Aguenouz², S. Romeo², D. Pontoriero², A. Cozzolibe, R. Capogrossob, V. Sbendoriob, A. De Lucab, G. Vitaa

¹University of Messina, Neuroscience, Messina, Italy, ²University of Bari, Pharmacobiology, Bari, Italy

The length of DNA telomeres is an important parameter of the proliferative potential of skeletal muscles. A telomere shortening has been reported in athletes suggesting that chronic endurance exercise may be seen as a stressor to skeletal muscle. In Duchenne muscular dystrophy (DMD) muscle, telomere shortening, resulting from continuous muscle degeneration-regeneration cycles, is thought to contribute to premature senescence of satellite cells and the following ultimate failure of regenerative activity. In mdx muscle telomere shortening occurs in tibialis anterior (TA) muscle only in 600-day old animals, whereas in diaphragm muscle in 100-600-day old mice.

We presently investigated whether telomere length is affected in mdx mouse muscles, in relation to morphological pattern and physical activity. To this aim, diaphragm and tibialis anterior muscles from 84-112-day old mdx mice were compared with samples from age-matched wild type mice. Exercised animals underwent a protocol of chronic treadmill running (8-10 weeks).

Our results confirmed an effect of exercise in healthy muscle showing a significant telomere shortening in exercised WT mice compared to sedentary animals in both muscles. Sedentary mdx mice showed a telomere shortening only in diaphragm muscle compared to WT. We confirmed that exercised mdx mice had a more compromised muscle architecture in both diaphragm and TA muscles compared to sedentary mdx, but this paralleled a lower telomere length only in diaphragm muscle. These results reinforce the assumption that telomere shortening can be involved in replicative senescence of satellite cells. Therefore the modulation of these events by the available compounds targeting telomere maintenance related proteins might represent a novel strategy for treatment of DMD and other muscular dystrophies.

P4.21

MR imaging and spectroscopy of the brain in DMD

C.S.M. Straathof², B.H.A. Wolke², H.A.M. Middelkoop³, M.A. van Buchem³, A.G. Webb³, J.J.G. Verschuuren³, H.E. Kan³

²Leiden University Medical Center, Neurology, Leiden, Netherlands, ³Leiden Medical University Center, Radiology, Leiden, Netherlands

About one third of boys with DMD shows cognitive impairment. This may be caused by the lack of dystrophin, but the mechanism remains to be clarified. Following successful restoration of in vivo dystrophin expression in human skeletal muscle, therapeutic trials with exon skipping are being planned. Whether treatments that improve muscle strength will be effective in brain is unknown. An imaging parameter that correlates with cognitive functioning would be very helpful.

We will present pilot data of magnetic resonance imaging (MRI) and spectroscopy studies of the brain in DMD boys that focus on structural, functional and metabolic parameters. High field strength quantitative MRI (3 Tesla) and MRS (7 Tesla) will be performed. The results will be correlated to healthy boys as well as to cognitive and behavioral functioning.

P4.22

Quantitative analysis of muscle wasting in Duchenne muscular dystrophy by a new computed tomography method

S. Kuru², M. Konagaya², N. Tanaka², S. Motoko², T. Nakayama³, M. Kawai³

²Suzuka National Hospital, Neurology, Suzuka, Japan, ³Suzuka National Hospital, Orthopaedic Surgery, Suzuka, Japan

The length of DNA telomeres is an important parameter of the proliferative potential of skeletal muscles. A telomere shortening has been reported in athletes suggesting that chronic endurance exercise may be seen as a stressor to skeletal muscle. In Duchenne muscular dystrophy (DMD) muscle, telomere shortening, resulting from continuous muscle degeneration-regeneration cycles, is thought to contribute to premature senescence of satellite cells and the following ultimate failure of regenerative activity. In mdx muscle telomere shortening occurs in tibialis anterior (TA) muscle only in 600-day old animals, whereas in diaphragm muscle in 100-600-day old mice.

We presently investigated whether telomere length is affected in mdx mouse muscles, in relation to morphological pattern and physical activity. To this aim, diaphragm and tibialis anterior muscles from 84-112-day old mdx mice were compared with samples from age-matched wild type mice. Exercised animals underwent a protocol of chronic treadmill running (8-10 weeks).

Our results confirmed an effect of exercise in healthy muscle showing a significant telomere shortening in exercised WT mice compared to sedentary animals in both muscles. Sedentary mdx mice showed a telomere shortening only in diaphragm muscle compared to WT. We confirmed that exercised mdx mice had a more compromised muscle architecture in both diaphragm and TA muscles compared to sedentary mdx, but this paralleled a lower telomere length only in diaphragm muscle. These results reinforce the assumption that telomere shortening can be involved in replicative senescence of satellite cells. Therefore the modulation of these events by the available compounds targeting telomere maintenance related proteins might represent a novel strategy for treatment of DMD and other muscular dystrophies.

doi:10.1016/j.nmd.2010.07.216

P4.23

MUSCLE IMAGING; POSTER PRESENTATIONS
Recently the therapies for muscular disorders are being developed. However, the method to measure muscle volume has not been established in determining the effect of therapeutic intervention. We have developed a new method for evaluating muscle volume using CT. We defined estimated muscle volume at a given CT slice level of the thigh as muscle volume index (MVI), and the ratio of MVI to total volume within the range of interest as % muscle volume index (%MVI). The purpose of this study is to confirm the validity of this method by investigating the relationship between functional stage and the new indices, and describing muscle damage progression by the indices. We calculated MVI and %MVI by means of making the histogram of CT value and applying the formula for correcting partial volume effect. A study in 21 patients with Duchenne muscular dystrophy (DMD) showed that MVI and %MVI at the maximum circumference level of the thigh were significantly correlated with functional stage (Ueda). The transitional change in MVI and %MVI was significantly regressed to an exponential function Y = Ae-βX. This result is accord with those of previous study as to change in serum CK in DMD. This implies that the rate of DMD muscle degradation might depend on the amount of existing muscle. This method is useful in assessing natural clinical course of disease and the efficacy of therapeutic interventions.

doi:10.1016/j.nmd.2010.07.218

P4.23
Non uniform fatty infiltration distribution of skeletal muscle tissue in facioscapulohumeral dystrophy
B.H. Janssen a, R.J.W. Arts b, N.B.M. Voet c, C.I.H. Nabuurs a, B.G.M. Engelen a, A. Heerschap a

a Radboud University Nijmegen Medical Centre, Radiology, Nijmegen, Netherlands, b Radboud University Nijmegen Medical Centre, Neurology, Nijmegen, Netherlands, c Radboud University Nijmegen Medical Centre, Rehabilitation, Nijmegen, Netherlands

Introduction: Facioscapulohumeral dystrophy (FSHD) is the third most common genetic muscular dystrophy. It is characterized by an uneven distribution of affected and unaffected muscles. We questioned if a similar heterogeneity exists within muscles. We used MRI techniques to quantify fatty infiltration over the length of thigh muscles of FSHD patients. Methods: 22 genetically proven FSHD patients were examined on a Siemens Trio 3T system. During the experiment multiple slices of multi-echo MR images were acquired covering between 59 and 83 mm of the upper leg. Signal decay by T2 relaxation in these images was fitted to a biexponential function with fixed relaxation rates for muscle and fat tissue (Kan et al, 2009). From the fit a degree of fatty infiltration was determined for each muscle and for each slice, which made it possible to study the degree of fatty infiltration over the length of the muscle. Results: A total of 272 thigh muscles were investigated of which 35 qualified as intermediately diseased muscle in FSHD patients. Methods: 22 genetically proven FSHD patients were examined on a Siemens Trio 3T system. During the experiment multiple slices of multi-echo MR images were acquired covering between 59 and 83 mm of the upper leg. Signal decay by T2 relaxation in these images was fitted to a biexponential function with fixed relaxation rates for muscle and fat tissue (Kan et al, 2009). From the fit a degree of fatty infiltration was determined for each muscle and for each slice, which made it possible to study the degree of fatty infiltration over the length of the muscle. Results: A total of 272 thigh muscles were investigated of which 35 qualified as intermediately diseased muscle in FSHD patients. Methods: 22 genetically proven FSHD patients were examined on a Siemens Trio 3T system. During the experiment multiple slices of multi-echo MR images were acquired covering between 59 and 83 mm of the upper leg. Signal decay by T2 relaxation in these images was fitted to a biexponential function with fixed relaxation rates for muscle and fat tissue (Kan et al, 2009). From the fit a degree of fatty infiltration was determined for each muscle and for each slice, which made it possible to study the degree of fatty infiltration over the length of the muscle. Results: A total of 272 thigh muscles were investigated of which 35 qualified as intermediately diseased muscle in FSHD patients. Methods: 22 genetically proven FSHD patients were examined on a Siemens Trio 3T system. During the experiment multiple slices of multi-echo MR images were acquired covering between 59 and 83 mm of the upper leg. Signal decay by T2 relaxation in these images was fitted to a biexponential function with fixed relaxation rates for muscle and fat tissue (Kan et al, 2009). From the fit a degree of fatty infiltration was determined for each muscle and for each slice, which made it possible to study the degree of fatty infiltration over the length of the muscle. Results: A total of 272 thigh muscles were investigated of which 35 qualified as intermediately diseased muscle in FSHD patients. Methods: 22 genetically proven FSHD patients were examined on a Siemens Trio 3T system. During the experiment multiple slices of multi-echo MR images were acquired covering between 59 and 83 mm of the upper leg. Signal decay by T2 relaxation in these images was fitted to a biexponential function with fixed relaxation rates for muscle and fat tissue (Kan et al, 2009). From the fit a degree of fatty infiltration was determined for each muscle and for each slice, which made it possible to study the degree of fatty infiltration over the length of the muscle. Results: A total of 272 thigh muscles were investigated of which 35 qualified as intermediately diseased muscle in FSHD patients.

P4.25
Functional outcome measures in limb girdle muscular dystrophy 2I: Correlations with MRI
M. Eagle, A. Mayhew, T.A. Willis, H. Lochmuller, K. Bushby, V. Straub
Institute of Genetics, Newcastle Muscle Centre, Newcastle, United Kingdom

Introduction: MRI is useful for diagnosis in muscular dystrophies and more recently has been considered as a potential outcome measure in clinical trials. Functional outcome measures have not been validated for use in LGMD 2I. We developed a series of functional outcome measures including timed tests, myometry, Adapted North